US009164690B2

a2z United States Patent (10) Patent No.: US 9,164,690 B2
Khailany et al. 45) Date of Patent: Oct. 20, 2015
(54) SYSTEM, METHOD, AND COMPUTER 6,708,256 B2* 3/2004 Zahir ... 711/141
PROGRAM PRODUCT FOR COPYING DATA g,?ﬁ%gg gé: 18%882 Xﬁnl?yke etal. ;ﬁ;}g;
11, ooker
BETWEEN MEMORY LOCATIONS 7490,218 B2* 2/2009 Eggersetal.cc..... 712/25
. . 7,567,963 B2* 7/2009 Shpeisman et al. /1
(75) Inventors: Brucek Kurdo Khailany, San 7,584,321 BL* 9/2009 Malachowsky et al. 711/5
Francisco, CA (US); Sean Jeffrey 8,266,607 B2* 9/2012 Burka etal 717/154
Treichler, Sunnyvale, CA (US) 8,381,203 B1* 2/2013 Beylinetal. T17/150
8,570,322 B2* 10/2013 Hanika et al. 345/421
(73) Assignee: NVIDIA Corporation, Santa Clara, CA 8,595,701 B2* 11/2013 Lietal. 717/124
(US) 8,599,841 B1* 12/2013 Sriram 370/389
2003/0135535 Al* 7/2003 Hoeflinger et al. 709/102
(*) Notice: Subject to any disclaimer, the term of this 2008/0040560 Al* 2/2008 Halletal. - 71152
patent is extended or adjusted under 35 2012/0204154 Al* 82012 Lietal. o T17/124
U.S.C. 154(b) by 330 days 2013/0166879 Al* 6/2013 Sunetal.cccoeovvenee. 712/30
T ’ 2014/0013083 Al* 12014 Jha 712/205
(21) Appl. No.: 13/560,315 2014/0164733 Al* 6/2014 Jha ...ccoovvvviiniininicnn, 712/4
.No.: R
(22) Filed: Jul. 27, 2012 OTHER PUBLICATIONS
(65) Prior Publication Data Gschwind, M. et al., “Synergistic Processing in Cell’s Multicore
Architecture,” IEEE Micro, 2006, pp. 10-24.
US 2014/0032828 Al Jan. 30, 2014 Rixner, S. et al., “A Bandwidth-Efficient Architecture for Media
(51) Int.CI Processing,” Appears in Micro-31, 1998, pp. 1-11.
Khailany, B. et al., “Imagine: Media Processing with Streams,” IEEE
GO6F 12/02 (2006.01) Micro, 2001, pp. 35-46.
GO6F 3/06 (2006.01) Continued
GOGF 9/30 (2006.01) (Continued)
(52) US.CL
CPCcccee. GO6F 3/065 (2013.01); GO6F 9/3004
(2013.01) Primary Examiner — Stephen Elmore
(58) Field of Classification Search (74) Attorney, Agent, or Firm — Zilka-Kotab, PC
CPC ..o GOG6F 3/065; GOGF 9/3004
USPC 711/105, 104, 147, 165, 162; 712/14,
712/214 7 ABSTRACT
See application file for complete search history.
A system, method, and computer program product are pro-
(56) References Cited vided for copying data between memory locations. In use, a
memory copy instruction is implemented. Additionally, data
U.S. PATENT DOCUMENTS is copied from a first memory location to a second memory
5074538 A * 10/1999 Wilmot. II 712/218 location, utilizing the memory copy instruction.
6,502,170 B2* 12/2002 Zahir ... L 711/141
6,647,456 B1* 11/2003 Van Dykeetal. 711/105

6,665,783 B2* 12/2003 Zahirccccoviiiiinn 711/165

21 Claims, 4 Drawing Sheets

go

ATHREAD IN ATHREAD ARRAY SPECIFIES A
SYNCHRONIZATION IDENTIFIER WHILE
EXECUTING A MEMORY COPY INSTRUCTION

THE THREAD IN THE THREAD ARRAY
SYNCHRONIZES USING THE
SYNCHRONIZATION IDENTIFIER TO WAIT
FOR ALL PERTINENT PRIOR MEMORY
TRANSFERS REQUESTED BY THE THREAD
TO COMPLETE BEFORE PROCESSING THE
COPIED DATA BY SUBSEQUENT
COMPUTATION OPERATIONS
304

US 9,164,690 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Mantor, M. et al., “AMD Graphic Core Next,” AMD Fusion Devel-
oper Summit, Jun. 2011, 45 slides.

Chen, T. et al., “Cell Broadband Engine Architecture and its first
implementation: A performance view” IBM, Nov. 29, 2005, retrieved
from http://www.ibm.com/developerworks/power/library/pa-
cellperf/, pp. 1-31.

* cited by examiner

U.S. Patent Oct. 20, 2015 Sheet 1 of 4

US 9,164,690 B2

qo

IMPLEMENTING A MEMORY COPY INSTRUCTION

N\

COPYING DATA FROM A FIRST MEMORY LOCATION
TO A SECOND MEMORY LOCATION, UTILIZING THE
MEMORY COPY INSTRUCTION

104

FIGURE 1

U.S. Patent Oct. 20, 2015 Sheet 2 of 4

US 9,164,690 B2

%200

ISSUING A MEMORY COPY INSTRUCTION VIA A
THREAD OF A PARALLEL THREAD ARRAY

/\f;)Z

COPYING DATA BETWEEN GLOBAL AND SHARED
MEMORY, BASED ON THE MEMORY COPY
INSTRUCTION

204

FIGURE 2

U.S. Patent Oct. 20, 2015 Sheet 3 of 4 US 9,164,690 B2

300

ATHREAD IN ATHREAD ARRAY SPECIFIES A
SYNCHRONIZATION IDENTIFIER WHILE
EXECUTING A MEMORY COPY INSTRUCTION
302

THE THREAD IN THE THREAD ARRAY
SYNCHRONIZES USING THE
SYNCHRONIZATION IDENTIFIER TO WAIT
FORALL PERTINENT PRIOR MEMORY
TRANSFERS REQUESTED BY THE THREAD
TO COMPLETE BEFORE PROCESSING THE
COPIED DATA BY SUBSEQUENT
COMPUTATION OPERATIONS
304

FIGURE 3

U.S. Patent

Oct. 20, 2015

Sheet 4 of 4 US 9,164,690 B2

400

BUS

402

CENTRAL |
PROCESSOR |

401

SECONDARY |

' ‘ STORAGE

410

GRAPHICS
PROCESSOR

406
DISPLAY

408

FIGURE 4

US 9,164,690 B2

1

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR COPYING DATA
BETWEEN MEMORY LOCATIONS

This invention was made with Government support under
Agreement No. HR0011-10-9-0008, awarded by DARPA.
The Government has certain rights in the invention.

FIELD OF THE INVENTION

The present invention relates to memory management, and
more particularly to copying data from a first memory loca-
tion to a second memory location.

BACKGROUND

Data is commonly transferred between memory locations
in order to be processed by a processor. For example, data
may be copied from dynamic random access memory
(DRAM) to local or shared memory for processing during a
streaming application. However, current techniques for copy-
ing data between memory locations have been associated
with various limitations.

For example, data may be first copied from external
memory to a register file, where it is then transferred to local
scratchpad memory within a processor. This may result in a
limited number of outstanding data transfers, bottlenecking,
wasted power, etc. There is thus a need for addressing these
and/or other issues associated with the prior art.

SUMMARY

A system, method, and computer program product are
provided for copying data between memory locations. In use,
a memory copy instruction is implemented. Additionally,
data is copied from a first memory location to a second
memory location, utilizing the memory copy instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a method for copying data between memory
locations, in accordance with one embodiment.

FIG. 2 shows a method for copying data from global to
shared memory, in accordance with another embodiment.

FIG. 3 shows a method for avoiding race conditions while
copying data, in accordance with another embodiment.

FIG. 4 illustrates an exemplary system in which the various
architecture and/or functionality of the various previous
embodiments may be implemented.

DETAILED DESCRIPTION

FIG. 1 shows a method 100 for copying data between
memory locations, in accordance with one embodiment. As
shown in operation 102, a memory copy instruction is imple-
mented. In one embodiment, the memory copy instruction
may include a hardware instruction. For example, the
memory copy instruction may include an instruction that is
read and implemented by a processor (e.g., a streaming mul-
tiprocessor, a multi-core processor, a graphics processing unit
(GPU), a central processing unit (CPU), etc.) of a computing
device. In another embodiment, the memory copy instruction
may be implemented using an instruction set architecture
(ISA). For example, the memory copy instruction may be
implemented using machine language or assembly language.

Additionally, in one embodiment, the memory copy
instruction may be issued by a thread. For example, the

10

15

20

25

30

35

40

45

50

55

60

65

2

memory copy instruction may be issued by a thread of a
parallel thread array. In another embodiment, the memory
copy instruction may include an instruction for copying data
from one memory location to another memory location. In
another embodiment, the memory copy instruction may
include one or more operands associated with the copying of
data.

For example, the memory copy instruction may include an
operand that specifies a destination address in a memory
location (e.g., an address in a memory location where data is
to be deposited, etc.). In another example, the memory copy
instruction may include an operand that specifies a source
address in a memory location (e.g., an address in a memory
location where data is to be retrieved, etc.). In yet another
example, the memory copy instruction may include an oper-
and indicating a size of data to be transferred from the source
address to the destination address.

Further, as shown in operation 104, data is copied from a
first memory location to a second memory location, utilizing
the memory copy instruction. In one embodiment, the data
may be copied in accordance with the one or more operands
included within the memory copy instruction. For example,
the first memory location may be indicated by the operand
within the memory copy instruction that specifies a source
address in a memory location. In another example, the second
memory location may be indicated by the operand within the
memory copy instruction that specifies a destination address
in a memory location. In still another example, an amount of
data copied from the first memory location to the second
memory location may be determined based on an operand
within the memory copy instruction indicating a size of data
to be transferred.

Further still, in one embodiment, the data may be copied
from the first memory location to the second memory loca-
tion, utilizing a processor. For example, a processor may read
the memory copy instruction and may perform the copying of
the data (e.g., by performing one or more actions, etc.)
according to the memory copy instruction. In another
embodiment, the data may be copied from the first memory
location to the second memory location, utilizing a thread.
For example, a plurality of threads may have the capability of
being scheduled, and a single thread of the plurality of threads
may instruct a processor to copy the data according to the
memory copy instruction.

Also, in one embodiment, the first and/or the second
memory location may include a location in external memory
(e.g., global memory, etc.). For example, the external memory
may include dynamic random access memory (DRAM), etc.
In another embodiment, the first and/or the second memory
location may include a location in local memory (e.g., on-
chip processor memory, shared memory, etc.). For example,
the local memory may include static random access memory
(SRAM), etc.

In addition, in one embodiment, data may be copied from
a plurality of locations in the first memory to a plurality of
locations in the second memory, utilizing a plurality of
memory copy instructions. In another embodiment, the plu-
rality of memory copy instructions may be executed in par-
allel. For example, a processor may be associated with a
parallel thread array including a plurality of parallel threads,
and each of a plurality of threads in the parallel thread array
may implement an independent memory copy instruction
(e.g., by indicating the memory copy instruction and copying
data according to the memory copy instruction, etc.) in par-
allel.

Furthermore, in one embodiment, copying the data from
the first memory location to the second memory location may

US 9,164,690 B2

3

include copying a sequential portion of data. For example,
one of a plurality of sequential portions of data may be copied
from the first memory location to the second memory loca-
tion, and the first memory location, the second memory loca-
tion, and the size of the portion of data may be specified by the
memory copy instruction.

Further still, in one embodiment, a mask bitfield may be
supported during the copying of the data from the first
memory location to the second memory location. For
example, in addition to the first memory location and the
second memory location, a mask bitfield may be specified by
the memory copy instruction. Additionally, each byte within
a sequential portion of data may be conditionally copied from
the first memory location to the second memory location
based on bits within the mask bitfield.

Also, in one embodiment, strided access patterns may be
supported during the copying of the data from the first
memory location to the second memory location. For
example, in addition to the first memory location and the
second memory location, an element count, an element size,
and an element stride may be specified by the memory copy
instruction. Additionally, a portion of data matching the ele-
ment count, size, and stride may be copied from the first
memory location to the second memory location in accor-
dance with the memory copy instruction.

Additionally, in one embodiment, race conditions may be
avoided during the copying of the data from the first memory
location to the second memory location. For example, named
barriers may be used to enable thread arrays to synchronize
with the completion of previously executed memory copy
instructions. For instance, a barrier group identifier may be
passed to the memory copy instruction and named barrier
instructions executed at a later time in the thread array may
wait for the memory copy instruction to complete before
allowing thread execution to continue.

In another embodiment, race conditions may be avoided
during the copying of the data from the first memory location
to the second memory location by utilizing a memory fence
instruction. For example, a synchronization identifier may be
passed to the memory copy instruction, and the memory fence
instruction may be executed after the memory copy instruc-
tion. Additionally, the memory fence instruction may cause
an executing thread to wait for all prior data transfers with an
identifier matching that of the memory fence instruction that
were requested by the executing thread to be performed
before proceeding with processing of the data. In this way,
data processing may not commence until all pertinent data
copying has been completed.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing framework may or may not be implemented, per
the desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes and
should not be construed as limiting in any manner. Any of the
following features may be optionally incorporated with or
without the exclusion of other features described.

FIG. 2 shows a method 200 for copying data from global to
shared memory, in accordance with another embodiment. As
an option, the method 200 may be carried out in the context of
the functionality of FIG. 1. Of course, however, the method
200 may be implemented in any desired environment. It
should also be noted that the aforementioned definitions may
apply during the present description.

As shown in operation 202, a memory copy instruction is
issued via a thread of a parallel thread array. In one embodi-
ment, the thread may be included within a parallel thread
array (e.g., a coherent thread array in a streaming multipro-

10

15

20

25

30

35

40

45

50

55

60

65

4

cessor or GPU, etc.). In another embodiment, a plurality of
independent memory copy instructions may each be issued in
a parallel manner via a separate thread of a parallel thread
array.

Additionally, in one embodiment, the memory copy
instruction may include a plurality of operands. Table 1 illus-
trates an exemplary specification for the memory copy
instruction, in accordance with one embodiment. Of course, it
should be noted that the exemplary specification shown in
Table 1 is set forth for illustrative purposes only, and thus
should not be construed as limiting in any manner.

TABLE 1

MEMCPY [Rdst + Imm], [Rsrc + Imm], ID, Size

In one embodiment, the “Rdst” operand of the memory
copy instruction may specify a destination address. For
example, the “Rdst” operand may specify a destination
address for data to be copied. In another embodiment, the
“Rsrc” operand may specify a source address. For example,
the “Rsrc” operand may specify a source address from which
data to be copied is obtained. In yet another embodiment, the
“Imm” operand may signify an offset associated with an
address (e.g., an immediate offset, etc.).

In still another embodiment, the “ID operand” may specify
an identifier (e.g., an identifier that may be used for synchro-
nization, etc.). In another embodiment, the “Size” operand
may specify a size. For example, the “Size” operand may
specify a size of the portion of data to be copied from a source
to adestination. In this way, the memory copy instruction may
cause a sequential portion of data with a size specified in bytes
to be copied from the source to the destination address.

Further, as shown in operation 204, data is copied between
global and shared memory, based on the memory copy
instruction. In one embodiment, the destination address of the
memory copy instruction may indicate a global memory
address, and the source address of the memory copy instruc-
tion may indicate a shared memory address, such that the data
is copied from the shared memory address to the global
memory address. In another embodiment, the destination
address of the memory copy instruction may indicate a shared
memory address, and the source address of the memory copy
instruction may indicate a global memory address, such that
the data is copied from the global memory address to the
shared memory address.

Further still, in one embodiment, with single instruction
multiple threads (SIMT) execution, in order to do a transfer of
kilobytes of data with complex access patterns, parallel
threads in a thread array may each execute a memory copy
instruction, typically all with the same ID, but with different
destination addresses, source addresses, and sometimes with
different sizes. For example, different sizes may be used for
mapping data access patterns where the size of the transfer is
not particularly well-matched to the number of threads in a
thread array. In another embodiment, a size of zero may
indicate that a particular thread should not cause any data to
be transferred.

Also, in one embodiment, the memory copy instruction
may support a mask bitfield. Table 2 illustrates an exemplary
specification for a memory copy instruction that supports a
mask bitfield on fixed-size data transfers, in accordance with
one embodiment. Of course, it should be noted that the exem-
plary specification shown in Table 2 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

US 9,164,690 B2

5
TABLE 2

MEMCPY [Rdst + Imm)], [Rsrc + Imm], ID, Mask

In one embodiment, a “Mask” operand may be provided
instead of a “Size” operand. In another embodiment, a size of
the data transfer may be fixed. For example, the size of the
data transfer may be based on a width of the “Mask” operand.
In yet another embodiment, each byte in a sequential portion
of data may be conditionally copied based on bits within the
“Mask” bitfield. In still another embodiment, with scatter/
gather support, data may be compacted when copied to the
destination address.

In addition, in one embodiment, the memory copy instruc-
tion may support strided access patterns. Table 3 illustrates an
exemplary specification for a memory copy instruction that
supports strided access patterns, in accordance with one
embodiment. Of course, it should be noted that the exemplary
specification shown in Table 3 is set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner.

TABLE 3

MEMCPY [Rdst + Imm], [Rsrc + Imm], ID, ElCnt, ElSize, ElStride

In one embodiment, the “ElCnt” operand of the memory
copy instruction may specify a configurable element count.
Additionally, the “ElSize” operand of the memory copy
instruction may specify a configurable element size. Further,
the “ElStride” operand of the memory copy instruction may
specify a configurable element stride. In another embodi-
ment, with parallel threads in a thread array, this may allow
for a reduced number of total MEMCPY instructions to
execute complex access patterns. For example, if it is desired
to copy a 64x64 matrix of elements from external memory to
shared memory, the strided MEMCPY may only require one
instruction if an ElCnt of 64 is supported (instead of issuing
64 thread instructions).

FIG. 3 shows a method 300 for avoiding race conditions
while copying data, in accordance with another embodiment.
As an option, the method 300 may be carried out in the
context of the functionality of FIGS. 1-2. Of course, however,
the method 300 may be implemented in any desired environ-
ment. It should also be noted that the aforementioned defini-
tions may apply during the present description.

As shown in operation 302, a thread in a thread array
specifies a synchronization identifier while executing a
memory copy instruction. In one embodiment, the synchro-
nization identifier may be included within the memory copy
instruction. In another embodiment, the synchronization
identifier may support synchronization via a memory fence
instruction. Table 4 illustrates an exemplary memory fence
instruction, in accordance with one embodiment. Of course, it
should be noted that the exemplary memory fence instruction
shown in Table 4 is set forth for illustrative purposes only, and
thus should not be construed as limiting in any manner.

TABLE 4

MEMBAR.ID ID

In one embodiment, the memory fence instruction “MEM-
BAR.ID” may include a single operand (“ID”) that may be
used for synchronization purposes. For example, the “ID”
operand may also be passed to the memory copy instruction

10

15

20

25

30

35

40

45

50

55

60

65

6

(e.g., as the “ID” operand of the memory copy instruction,
etc.). In another embodiment, different threads within a par-
allel thread array may issue independent memory fence
instructions in parallel.

Additionally, as shown in operation 304, the thread in the
thread array synchronizes using the synchronization identi-
fier to wait for all pertinent prior memory transfers requested
by the thread to complete before processing the copied data
by subsequent computation operations. For example, the
thread may wait for all prior memory transfers with an “ID”
operand matching the “ID” operand in the memory copy
instruction to complete before proceeding with a computation
operation. In this way, processing of data may not proceed
until the copying of the data is completed, such that a memory
fence instruction may be applied to all outstanding memory
copies with a predetermined ID issued from a thread array.

Further, in one embodiment, the MEMBAR_.ID instruction
may provide software flexibility for synchronization since
one MEMBAR.ID can synchronize with multiple MEMCPY
instructions (even if the MEMCPY instructions complete out
of order). The MEMBAR.ID instruction may also allow for
lighter-weight more-flexible synchronization since such
instruction may not require all threads in a thread array to
arrive at a barrier before proceeding, which may thereby
enable parallel independent work to be performed in certain
use cases.

Further still, in one embodiment, named barriers may be
used to avoid race conditions. For example, a named barrier
such as BAR.SYNC with barrier group IDs may be used,
where a barrier group ID may be passed to the memory copy
instruction and BAR.SYNC instructions executed later in the
thread array may wait for the memory copy instruction to
complete before allowing thread execution to continue. This
may avoid race conditions between the copying of data to
shared memory and computation which uses that data by
enabling thread arrays to synchronize with the completion of
previously-executed memory copy instructions.

Also, in one embodiment, the completion of MEMCPY
instructions may be signaled through an existing named bar-
rier mechanism (e.g., BAR.SYNC, etc.). For example, the
memory copy instruction may be given the name of a barrier,
and once the memory copy instruction has completed, the
equivalent of a BAR.ARV on that barrier may be performed.
In another embodiment, any threads that wish to wait on the
completion of one or more memory copy instructions (regard-
less of which thread issued them) may perform a
BAR.SYNC, which may specity the number of memory copy
instructions that were issued with that barrier ID (e.g., the
number of additional barrier arrivals expected, etc.). In yet
another embodiment, threads that don’t need to wait for the
memory copy instructions to complete (even if they helped to
issue some of them) may not participate in the BAR.SYNC
and may continue execution without unnecessary stalling.

In addition, in one embodiment, streaming applications
may make use of memory fence instructions in different
ways, depending on workload characteristics. For example,
streaming applications may be written by setting up a buffer
in shared memory and may be run with multiple thread arrays
per streaming multiprocessor for maximum concurrency. In
this way, every thread in a thread array may issue a sequence
of non-blocking data transfers using memory copy instruc-
tions to prefetch data to shared memory (e.g., the “next”
buffer, etc.) while performing computation on the current
buffer. In another embodiment, once the computation com-
pletes, a barrier may be used for synchronization.

Furthermore, in one embodiment, two buffers may be set
up per thread array and double buffering may be used to

US 9,164,690 B2

7

achieve maximum concurrency. This approach may increase
an efficiency of register usage. Further still, with this usage
pattern, the efficient lightweight synchronization provided by
MEMBAR.ID combined with producer/consumer synchro-
nization instructions may result in increased synchronization
speed. Also, the above usage patterns may also be combined
with thread specialization. For example, with thread special-
ization, a single thread array may be split into “DMA threads”
and “compute threads.” In another example, DMA threads
may be responsible for executing the data transfers to shared
memory while compute threads may be responsible for pro-
cessing the data in shared memory.

Inthis way, the above memory copy instructions may retain
the same semantics as a load concatenated with a store to the
compiler, which may make the copy instructions an easy
compilation target. Additionally, the above memory copy
instructions may apply to arbitrary application domains with
new access patterns. Further, registers may not be used for
staging purposes during data transfers between memory loca-
tions, which may result in a greater amount of available
registers. Further still, power overhead/dissipation may be
reduced.

Also, streaming multi-processors (SMs) (e.g., those used
in GPUs or other throughput-optimized processing cores),
may use the above memory copy instructions and memory
fence instructions to copy batches (e.g., kilobytes, etc.) of
data from external memory (e.g., DRAM, etc.) to on-chip
local memory (e.g., local SRAMs, etc.). These copies may
enable streaming applications, where computation may loop
over a dataset that is too large to fit in on-chip memory by
processing a sub-block of that dataset during each loop itera-
tion. For example, a matrix-vector multiply may load a long
vector into shared memory in multiple stages or loop itera-
tions. For each stage, data may be first copied from DRAM
into shared memory and then may be processed. This may be
repeated multiple times in order to compute each output
value.

FIG. 4 illustrates an exemplary system 400 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a sys-
tem 400 is provided including at least one host processor 401
which is connected to a communication bus 402. The system
400 also includes a main memory 404. Control logic (soft-
ware) and data are stored in the main memory 404 which may
take the form of random access memory (RAM).

The system 400 also includes a graphics processor 406 and
a display 408, i.e. a computer monitor. In one embodiment,
the graphics processor 406 may include a plurality of shader
modules, a rasterization module, etc. Each of the foregoing
modules may even be situated on a single semiconductor
platform to form a graphics processing unit (GPU).

In the present description, a single semiconductor platform
may refer to a sole unitary semiconductor-based integrated
circuit or chip. It should be noted that the term single semi-
conductor platform may also refer to multi-chip modules with
increased connectivity which simulate on-chip operation, and
make substantial improvements over utilizing a conventional
central processing unit (CPU) and bus implementation. Of
course, the various modules may also be situated separately
or in various combinations of semiconductor platforms per
the desires of the user.

The system 400 may also include a secondary storage 410.
The secondary storage 410 includes, for example, a hard disk
drive and/or a removable storage drive, representing a floppy
disk drive, a magnetic tape drive, a compact disk drive, etc.
The removable storage drive reads from and/or writes to a
removable storage unit in a well known manner.

25

30

35

40

45

8

Computer programs, or computer control logic algorithms,
may be stored in the main memory 404 and/or the secondary
storage 410. Such computer programs, when executed,
enable the system 400 to perform various functions. Memory
404, storage 410 and/or any other storage are possible
examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the host processor 401, graphics processor 406, an
integrated circuit (not shown) that is capable of at least a
portion of the capabilities of both the host processor 401 and
the graphics processor 406, a chipset (i.e. a group of inte-
grated circuits designed to work and sold as a unit for per-
forming related functions, etc.), and/or any other integrated
circuit for that matter.

Still yet, the architecture and/or functionality of the various
previous figures may be implemented in the context of a
general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 400 may take the form of a desktop
computer, laptop computer, and/or any other type of logic.
Still yet, the system 400 may take the form of various other
devices m including, but not limited to a personal digital
assistant (PDA) device, a mobile phone device, a television,
etc.

Further, while not shown, the system 400 may be coupled
to a network [e.g. a telecommunications network, local area
network (LAN), wireless network, wide area network (WAN)
such as the Internet, peer-to-peer network, cable network,
etc.) for communication purposes.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of'a preferred embodiment should not be limited by any ofthe
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:
1. A method comprising:
receiving, by a processor associated with a parallel thread
array including a plurality of parallel threads, a memory
copy instruction configured to copy data for a first thread
of the plurality of parallel threads from a first memory to
a second memory;

determining, by the processor, that the first thread specifies
a synchronization identifier corresponding to the
memory copy instruction; and

processing the data by the processor after waiting for all

memory transfers requested by the first thread to com-
plete.

2. The method of claim 1, wherein the memory copy
instruction includes an operand that specifies a destination
address in the second memory, an operand that specifies a
source address in the first memory, and an operand indicating
a size of the data to be transferred from the source address to
the destination address.

3. The method of claim 1, wherein an amount of the data
copied from the first memory to the second memory is deter-
mined based on an operand within the memory copy instruc-
tion indicating a size of the data to be transferred.

4. The method of claim 1, wherein the synchronization
identifier is included within the memory copy instruction.

5. The method of claim 1, further comprising, receiving, by
the processor, a memory fence instruction that includes the
synchronization identifier.

US 9,164,690 B2

9

6. The method of claim 1, further comprising, before the
processing, determining that a second synchronization iden-
tifier included in a memory fence instruction matches the
synchronization identifier specified by the first thread.

7. The method of claim 1, further comprising:

receiving, by the processor, a second memory copy instruc-

tion configured to copy second data for a second thread
of' the plurality of parallel threads from the first memory
to the second memory;
determining, by the processor, that the second thread does
not specify the synchronization identifier; and

processing the second data by the processor without wait-
ing for all memory transfers requested by the second
thread to complete.

8. The method of claim 1, further comprising:

receiving, by the processor, a second memory copy instruc-

tion configured to copy second data for a second thread
of' the plurality of parallel threads from the first memory
to the second memory;

determining, by the processor, that the second thread speci-

fies the synchronization identifier corresponding to the
memory copy instruction; and

processing the second data by the processor after waiting

for all memory transfers requested by the second thread
and the first thread to complete.

9. The method of claim 1, wherein the synchronization
identifier is a barrier group identifier indicating that the first
thread participates in the barrier group, and further compris-
ing, before the determining, receiving a barrier instruction
corresponding to the barrier group identifier.

10. The method of claim 1, wherein the memory copy
instruction includes a size that specifies a size of the data that
is copied from the first memory to the second memory and
copying none of the data when the size specified by the
memory copy instruction is zero.

11. The method of claim 1, wherein the memory copy
instruction includes a mask bitfield that specifies which bytes
within the data are copied from the first memory to the second
memory.

12. A system comprising:

a first memory;

a second memory; and

a processor associated with a parallel thread array includ-

ing a plurality of parallel threads and configured to:

receive a memory copy instruction configured to copy
data for a first thread of the plurality of parallel threads
from the first memory to the second memory;

determine that the first thread specifies a synchroniza-
tion identifier corresponding to the memory copy
instruction; and

process the data after waiting for all memory transfers
requested by the first thread to complete.

13. The system of claim 12, wherein the memory copy
instruction includes an operand that specifies a destination
address in the second memory, an operand that specifies a
source address in the first memory, and an operand indicating
a size of the data to be transferred from the source address to
the destination address.

10

15

20

40

45

50

55

10

14. The system of claim 12, wherein an amount of the data
copied from the first memory to the second memory is deter-
mined based on an operand within the memory copy instruc-
tion indicating a size of the data to be transferred.

15. The system of claim 12, wherein the synchronization
identifier is included within the memory copy instruction.

16. The system of claim 12, wherein the processor receives
a memory fence instruction that includes the synchronization
identifier.

17. The system of claim 12, wherein the processor is fur-
ther configured to determine that a second synchronization
identifier included in a memory fence instruction matches the
synchronization identifier specified by the first thread before
processing the data.

18. The system of claim 12, wherein the processor is fur-
ther configured to:

receive a second memory copy instruction configured to

copy second data for a second thread of the plurality of
parallel threads from the first memory to the second
memory;

determine that the second thread does not specify the syn-

chronization identifier; and

process the second data without waiting for all memory

transfers requested by the second thread to complete.

19. The system of claim 12, wherein the processor is fur-
ther configured to:

receive a second memory copy instruction configured to

copy second data for a second thread of the plurality of
parallel threads from the first memory to the second
memory;

determine that the second thread does specity the synchro-

nization identifier corresponding to the memory copy
instruction; and

process the second data by the processor after waiting for

all memory transfers requested by the second thread and
the first thread to complete.

20. The system of claim 12, wherein the synchronization
identifier is a barrier group identifier indicating that the first
thread participates in the barrier group, and further compris-
ing, before the determining, receiving a barrier instruction
corresponding to the barrier group identifier.

21. A non-transitory computer-readable medium storing
instructions that, when executed by a processor, causes the
processor to perform steps comprising:

receiving a memory copy instruction configured to copy

data for a first thread of a plurality of parallel threads
from a first memory to a second memory, wherein the
processor is associated with a parallel thread array
including the plurality of parallel threads;

determining that the first thread specifies a synchronization

identifier corresponding to the memory copy instruc-
tion; and

processing the data after waiting for all memory transfers

requested by the first thread to complete.

#* #* #* #* #*

